If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-5n-52=0
a = 1; b = -5; c = -52;
Δ = b2-4ac
Δ = -52-4·1·(-52)
Δ = 233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{233}}{2*1}=\frac{5-\sqrt{233}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{233}}{2*1}=\frac{5+\sqrt{233}}{2} $
| 2r/5-1=3 | | z^2-2z=3 | | 3x+8=-4x+1 | | (2x-12)/3=2/3x-4 | | 3x+8=-4x1 | | 128=2x-10 | | (N-2)180=162×n | | 6/t-5/t+2=1 | | ((x)^(1/4))+((1/((x)^(1/4)))=2.5 | | 128+5x-3=180 | | x=3x-9÷2 | | 4+4x+2=90 | | x+3/4=x+1 | | G(x)=3x=2x+9 | | 5x−7=10 | | 5x−7=10. | | 3/x+5=18/x-5 | | 5x+4+6=10x-5 | | 2x+5=3x-(2x-5) | | 2x+5=3x-(3x-5) | | 6x-3x+6=36 | | 17x+3+96=12x-9 | | Y=3.1+1.8x | | 2(x–5)=5–3x | | 4x-4(x-3)=6x-12 | | y=0,3582 | | 7/x+2-8/4x-8=9 | | 2/x+2+8/3x+6=-9 | | 4x+5/9+2x-2/6=-6 | | 5x=+3/8=7x+9/2=-24 | | 2x+3.5(25-x)=65 | | 14x^2=35x=0 |